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Introduction

The history of polyadenosine diphosphate (ADP) ribose 
polymerase (PARP) invention is fascinating. Japanese did 
equally well when a French group (1) discovered in an 
experiment of kidney cortical nuclei that more phosphate is 
absorbed from nicotine adenine dinucleotide (NAD). This gives 
rise to branched poly’s of ADP ribose, which not only could 
anchor on the single stand defects of DNA but could also bring 
the other players of single strand repair to the field. X-ray repair 
cross-complementing protein 1 (XRCC1) and other proteins are 
such players. The initiation of repair is a little confusing activity 
of the protein enzyme PARPs, which has its 17 types working 
mainly through types 1 and 2. Inflammation, chemical, and 
radiation injury are the least known about that activity. They 
have the onus to manage about ten thousand single strand 
breaks (SSB’s) of a mixed etiology per day. In the presence of 
inhibitors, PARP cannot prevent stand breaks, instead SSB’s 
pile up at fork to cause double strand breaks (DSB). This 
DSB is historically managed by breast cancer (BRCA) 1 in 
female breasts and in male breasts, particularly with tumor 
suppressor twin BRCA 2. They repair DSB, but being mutated 
congregates huge load of unrepaired DSB causing “synthetic 
lethality” of cancer cell. (2-4). These inhibitors will even be 
tried now in related tumors with BRCAness (5). BRCAness is 
a behavior of certain tumors, such as some non BRCA ovarian 
cancer and triple negative breast cancer. “BRCAness” traits 
in some sporadic cancers are similar to either BRCA1- or 
BRCA2-mutation carriers. They have 396 well appearances 
reciprocating those of BRCA negatives. 

In the pharmaceutical industry, the invention of PARP 
inhibitor (PARPi) and eventual availability in the market of 
first molecule of its kind, such as olaparib, becomes possible 
only after very stringent clinical trial. Then, there will be a 
question of resistance, which could be as high as more than 
seventy percent in refractory group (6). We will take a look at 
the progress of the subject in following few paragraphs. 

Olaparib
A new era begun in targeted therapy horizon when on 19th 
December last year, a first-in-class PARP inhibitor drug 
olaparib was approved in the United States for the treatment 
of advanced ovarian cancer patients with BRCA mutations 
who have had three or more lines of chemotherapy. It may be 
noted that in the early part of 2014, Oncologic Drugs Advisory 
Committee (ODAC) of the US Food and Drug Administration 
(FDA) voted against the approval of olaparib. This is not very 
surprising because the trial that the company placed before 
the committee was a placebo-controlled trial in 136 patients 
with platinum-sensitive ovarian cancer (7). Olaparib as a 
maintenance therapy in relapsed ovarian cancer did not fare 
well. Clinical Trials.gov, number NCT00753545. Hence, the 
committee defeated the proposal by an 11 to 2 vote.
On the basis of data from the same placebo-controlled 
trial in 136 patients with platinum-sensitive ovarian cancer, 
a second interim analysis (8) of overall survival and a 
retrospective, preplanned analysis of data by BRCA mutation 
status company found support of the hypothesis that patients 
with platinum-sensitive recurrent serous ovarian cancer with 
a BRCA mutation have the greatest likelihood of benefiting 
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from olaparib treatment (8). It is rather astonishing that FDA 
gave this compound an accelerated approval in December 19th, 
2014 after an expedited review process over the same trial on 
the basis of second interim analysis. 
On the other hand, a diagnostic company announced approval 
from the U.S. FDA on the same day for their BRACAnalysis CDx 
diagnostic kit to be used as the only companion diagnostic in 
conjunction with olaparib. BRACAnalysis CDx is this company’s 
first FDA-approved companion diagnostic for use with a novel 
PARP inhibitor. It is a highly accurate molecular companion di-
agnostic test that identifies deleterious or suspected deleterious 
mutations in BRCA1 and BRCA2 genes using DNA obtained from 
a blood sample. Olaparib was approved for a similar indication 
in the European Union just only a day earlier than done by USF-
DA after a recommendation for approval obtained in October 
from the European Medicines Agency. 
Breast cancer, which is associated with lesser percentage of 
such mutation (10% against 15%), is reasonably in the pipe-
line as a trial of this cancer is in phase III and is under way 
(NCT00516724, NCT01445418)

Nicotinamide, iniparib, and other PARPi
However, if we see nicotinamide as a primary inhibitor, dif-
ferent basic small molecules and molecules with appropriate 
scaffold (Figure 1) have come up as inhibitors of this PARP. 
Phthalazinone scaffolding has given rise to olaparib. With oth-
ers in phase II, small molecule iniparib’s tragic attempt and 
failure as PARPi teaches us a good lesson worthy of describing. 
It has since become a poster child in how not to develop a 
drug and also shows how a review article may play a crucial 
role in development of a drug. The preclinical experiments are 
still very challenging and it is proved by the fact that this small 
molecule, which is an 3 iodo 4 nitro derivative of benzamide, 
is a nicotinamide derivative. Although it had other mechanism 
for being apoptotic to cancer cells, it has no particular PARP 
inhibitory property. 
Fojo et al. (9) the National Cancer Institute suggested in a com-
mentary that the clinical trial design, which allowed the place-

bo arm to cross over and receive iniparib after their disease had 
progressed, may have biased the overall survival data in favor 
of iniparib. The drug’s failure would not have been so dramatic 
had it not also slowed the pace of research. It led whole PARPi 
chapter to disrepute so that people would give up doing PARP 
as a whole. This subject’s uniqueness of targeting a weakness 
rather than strength had been the center of controversy and 
confusion. Thus, further development up to olaparib is believed 
to be a paradigm shift to a later easy phase of rapid develop-
ment. We may delve now to a chartable clinical picture in the 
context this article aims for. 

Resistance
They already tested no less than 89 patients in a retrospective 
review of patients with BRCA1/2 mutation carrier ovarian cancer 
(PBMCOC) who received chemotherapy following disease 
progression on olaparib, administered at 200 mg twice daily 
for 1 month or more (10). An increased platinum-to-platinum 
interval was associated with an increased OS and likelihood of 
response following post-olaparib platinum. Heavily pretreated 
PBMCOC that are PARPi resistant retain the potential to respond 
to subsequent chemotherapy, including platinum-based agents. 
There are currently no other preclinical or clinical data to 
support this hypothesis; further work is certainly warranted 
in this regard. Therefore, what it leads to is a thorough search 
for inhibitor resistance pathways. They are described below 
following an order where postulates with more proofs needed 
are placed in last.

Decreasing intracellular availability of PARPi 
Established molecule, P-glycoprotein 1 (P-gp), has a great 
importance in this subject. This acts by decreasing the intra-
cellular availability of PARPi. The P-gp belongs to the ABC 
transporter family, which is inhibited by ADP ribose, a product 
of catalytic activity of PARP-1 (11). While Rottenberg et al. (12) 
elucidated its poly ADP dependence, P-gp inhibitors prevent 
the decrease of PARPi in human colorectal carcinoma cell line 
(HCT116) (13). This is made even robust with an available bio-
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Figure 1. Different PARP inhibitors
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marker. The monitoring of poly ADP ribosylation and radiation 
sensitive gene (Rad51) foci formation as surrogate markers for 
PARP activity and homologous recombination (HR), respec-
tively, supported their candidacy for biomarkers of PARP-1i 
responses. The multidrug efflux transporters, ATP-binding cas-
sette sub-family G member 2 (ABCG2) (human breast cancer 
resistance protein (BCRP)) and ATP-binding cassette sub-family 
G member 1 ABCB1 (P-gp, multi drug resistance 1 (MDR1)), 
affected the oral availability and brain penetration of PARPi. 
Transport could be inhibited by the small-molecule ABCB1 
and ABCG2 inhibitors zosuquidar and indole-3-propanoic acid 
1.1-dimethylethyl ester (Ko143) (14). 

Increased homologous recombination (HR) capacity pathways 
53BP1 (also called TP53BP1) is a chromatin-associated factor 
that promotes immunoglobulin class switching and DNA DSB 
repair by non-homologous end joining. Assessment of 53BP1 
is among candidate predictive biomarkers inducing Ataxia 
telangiectasia mutated (ATM)-mediated HR. Loss of 53BP1 
allowed a partial ATM-dependent HR repair making these cells 
resistant to PARPi (15). Here, secondary mutations in BRCA2 is 
associated with clinical resistance to a PARPi (16).
Other postulated pathways among increased HR capacity are 
overexpression of BRCA via downregulation of a microRNA 
(miR-182) or PARP-1, increased activity of RAD51, and altered 
non-homologous end joining (NHEJ) capacity with a decrease 
in NHEJ capacity could increase their resistance to PARPi, as 
shown in BRCA 2-deficient cells by inhibition or downregula-
tion of Ku80, a protein encoded by the XRCC5 gene, Artemis, or 
DNA-dependent protein kinase (DNA-PK) (17). 

Reverse mutation of BRCA
Except above two, there is a third prominent and more “counting” 
routes for such possible inhibitions. It is a reverse mutation 
of BRCA prompting power for repair once again. For BRCA2, 
reverse mutation was in part due to the intragenic deletion of the 
c.6174delT mutation and restoration of the open reading frame 
(18-20) and for BRCA1, it is hypomorphic mutation (21).

Decreased levels or activity of PARP-1
Decreased levels or activity of PARP-1 is another one at hand 
though it is difficult at this moment to rationalize the link 
between cytoplasmic PARP-1 and resistance to PARPi. 

Manipulation of other damage repair pathways 
Whereas breakthrough researches in sub-pathaway battery of 
PARP inhibitor resistance may prove to be lucrative addendum 
to this PARP theory, even more basic should be other damage 
repair pathways manipulation, which may give rise to elemen-
tary vis-à-vis synergistic sister pathways predicted to be acting 
with many chemotherapeutic cocktail. We may like to summa-
rize those effectively. A few established links, which have roots 
in alternate damage saving power are:
Tumor suppressor gene phosphatase and tensin homolog 
(PTEN) has links with many cancers, including 25%–40% of 
glioblastomas sensitive to PARP inhibitors with implication in 
prostate, colorectal, and endometrial cancers, which also have 

this dysfunction in DNA repair pathways (18). Locating DNA 
mismatch repair gene MSH mutation in tumors like heredi-
tary non-polyposis colon cancer could be a key predictor of 
methotrexate sensitivity of the tumor. O6-methylguanine–DNA 
methyltransferase (MGMT) repairs chemical DNA Its mutation 
in acute myeloid leukemia makes the cancer responsive to 
temozolomide.
Checkpoint proteins hold the cell replication cycle to protect 
DNA. Their defects such as p53 and Chk1 and Chk2 have 
been linked to cancer. Drugs targeted at checkpoint proteins 
with radiation can kill the cell by damage build ups of syn-
thetic lethality. A small molecule inhibitor of checkpoint kinases 
(Chks) with potential chemosensitizing activity is tried by one 
pharma company in combination with gemcitabine in patients 
with solid tumors in phase I trial with no results shown yet (22). 
Jung-Min Lee of NCI on behalf of another company has a prom-
ising trial on another such inhibitor LY260636, which is already 
in phase II (23). With BRCA1/2 mutation associated breast or 
ovarian cancer, non-high risk triple negative breast cancer, 
and high grade serous ovarian cancer, another phase I study is 
ongoing after completing a phase 1 study in participants with 
advanced Cancer (24). We are very hopeful about this study.
Enzyme regulators of Chk1 and Chk2, the ATM kinase and 
another effector kinase, ATR (ataxia-telangiectasia and Rad3-
related) are also targeted. In response to DNA damage, they 
initiate a cascade leading to DNA repair. In a preclinical study, 
ATM inhibitors KU-60019 radiosensitize GIC-driven tumors with 
low expression of TP53 and high expression of PI3K (22). 
Members of the cyclin-dependent kinase (CDK) family stop 
the cell cycle for repair. They could be targeted by one Indian 
company who developed CDK1–CDK4 inhibitor called P276-
00. In multiple early trials, it is used in combination with 
chemotherapy drugs to treat advanced malignant melanoma, 
pancreatic cancer, multiple myeloma, and head and neck 
cancer. There are no results of these phase II trial with Professor 
Peter Hersey of New Castle University in one melanoma trial. 
However, other members of the CDK family playing key roles in 
normal cell-specific CDK1 and CDK4 inhibitor are a requirement.

Conclusion

Clinical research is basically uncertain. Theory and practice 
may not coincide. Specificity is not always elicited in preclinical 
studies. Use of defects specific to cancer cell is not always 
harmless as it does not become apparent until trials have 
begun. Testing drug cocktails is a tough task, particularly with 
DNA damage repair inhibited synthetic lethality. While this is 
only a beginning of a whole new era of targeting weakness, 
there will be long perilous path for traversing till one may 
expect for some panacea.
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